Patterns for Single-Sourcing RCP and RAP applications

Benjamin Muskalla (EclipseSource)

A Fclipsedource

Version: 1.1.4



Abstract

Developing fully single-sourced bundles for Eclipse RCP and RAP requires following certain practices.
This paper describes different patterns and refactorings to achieve single sourcing of applications
for both runtime platforms. These patterns have been gleaned from our experiences single sourcing
various applications in the Eclipse.org runtime space and tooling space.



Contents

Contents

1 Introduction

2 Workspace organization

2.1 Target platforms . . . . . . . . . ..
2.2 Using separate workspaces . . . . . . . . ... L.
2.3 Develop principally on the RAP Target Platform . . . . .. .. .. ... ... .....
3 Dependencies
3.1 The problem - What strategy is best for managing dependencies . . . . .. . ... ..
3.1.1 Bundle dependencies . . . . . . . ... e
3.1.2 Package dependencies . . . . . . .. Lo L
3.1.3 Split packages . . . . . . ..
3.2 Favor Require-Bundle . . . . . . . .. ...
4 Missing API
4.1 The problem . . . . . .. L
4.2 Building fragments . . . . . ... Lo
4.3 Extract a compatibility plug-in . . . . .. ..o Lo

5 Missing extension points
5.1 The problem . . . . . . . . e
5.2 Move extensions to fragments . . . . . ... oL oL

6 Application startup and Activator scope
6.1 The problem . . . . . . L
6.2 Separate session-specific code from Activator . . . . . . ... ...

7 API Differences
7.1 Theproblem . . . . . . . e
7.2 Encapsulate the problem . . . . . . . .. L Lo

8 Field validation
8.1 The problem . . . . . . . ..
8.2 Reduce the frequency of validation checks . . . . . . . . ... .. ... ... ......

9 SWT Resources
9.1 The problem . . . . . . . e
9.2 Use higher-level APT . . . . . . . . .

10 Singletons and Scopes
10.1 The problem . . . . . . . . e
10.2 Use session singletons . . . . . . . .. L oL L e
10.3 Move the instance creation to the fragments . . . . . . . . . ... L oL

11 Jobs and background threads
11.1 The Problem . . . . . . . . . e
11.2 Use afacade . . . . . . . . . . . e e

12 Internationalization and localization
12.1 The problem . . . . . . . . e
12.2 Make translatable strings non-static . . . . . . ... ... ... oL L.

(&)

oo e

o0 0o Co Co Co ©O



Contents

12.3 Remove static initializer and supertype . . . . . . . .. .. L L Lo 24
12.4 Create an NLSHelper and implementations . . . . . ... ... ... ... ....... 25
12.5 Fix your message references . . . . . . . . . .. Lo e 26

12.6 Localize the plug-in manifest . . . . . . . .. .. ... oo 26



1 Introduction

1 Introduction

The purpose of the Eclipse RT top-level project at Eclipse is to bring together various runtime related
efforts and technologies and to foster, promote and house runtime efforts at Eclipse!. It is part of
a larger Equinox Community drive to implement Equinox-based technology across a broad range of
computing environments and problem domains. Underlying all these efforts is the common goal of
providing a uniform component model across a wide variety of computing environments. The Equinox
framework and OSGi [All03] form the basis of this infrastructure.

Write once, run everywhere is the main objective of the Java®™ programming language [AHL*05].
This holds true most of the time for running the same program on different operating systems. But as
technology evolves the Eclipse Foundations strives to bring this slogan to a new level. Two technology
projects, housed under the Eclipse.org umbrella, namely RAP? and eRCP?, provide an alternative
runtime environment for RCP applications. This means that the application - normally running as
a desktop application on a personal computer - can now be deployed to other runtime environments.
For example let us assume we have a ready to launch application based on RCP. By switching the
runtime from RCP to RAP, it becomes possible to launch the application on an application server
where clients ccan use the application with a Web 2.0 centric interface on a browser. There is no need
for the user to install any further add-ons or plugins. In order to achieve full compatibility between
the platforms, many concepts implemented in SWT [NWO04] need to be adapted to other runtimes.
These are hidden behind the public API which remains synchronous across all runtime projects.

Developing fully single-sourced bundles for Eclipse RCP and RAP requires following certain prac-
tices. It may also be possible to change the structure of the application code to fit the current
runtime environment. Depending on the specific case, this may be achievable through normal refac-
torings [FBBT99]. The refactorings are not onerous and generally lead to better quality bundles
irrespective of the single-sourcing requirement.

Thttp://www.eclipse.org
2http://www.eclipse.org/rap
3http://www.eclipse.org/ercp



2 Workspace organization

2 Workspace organization

2.1 Target platforms

Eclipse PDE uses the concept of a "Target Platform” to manage the set of third-party bundles available
for development. The target platform is the directory containing the pre-built binary bundles that
the workspace bundles depend on. It is used to compile the workspace and is also used when the user
launches an application by clicking Run or Debug from the workbench. RAP itself delivers its own
target platform so developers can easily switch between the RCP plugins and the RAP counterparts.

By default Eclipse uses its own installation directory as the Target Platform, which is suitable for
developing SDK plug-ins but is less suitable for developing RCP or RAP bundles. For RCP, this
default Target Platform is unsuitable because it contains many superfluous bundles relating to the
IDE functionality, which may inadvertently be pulled in as dependencies of the application. For RAP
the default is unsuitable for the same reason, and in addition it doesn’t contain all the RAP-specific
APT bundles.

Managing two separate target platforms is currently one of the key challenges when single-sourcing
applications for RAP and RCP. Unfortunately PDE only allows one Target Platform at a time. There
are two disadvantages to this limit. First, switching the target is very time-consuming as the whole
workspace needs to be recompiled. Secondly, we need to close all related projects which do not
match the target platform in order to have a clean workspace. A reasonable solution which has been
become apparent is to use different workspaces for the different runtime environments. However, it
is important to frequently check the code for compliance with the alternative runtime environments.
An automated build should be used to perform a full build against both Target Platforms at regular
intervals.

2.2 Using separate workspaces

In order to manage the two target platforms, we create two separate workspaces. Generally within a
given workspace we have two types of projects. First, projects that are common for both platforms
which can be reused without any modification. Secondly, we have projects that are platform-specific
and thus contain only code that runs on one of the platforms (eg. an entrypoint implementation).
By utilizing separate workspaces for each platform we can import all common projects into both
workspaces and have the projects unique for one platform in the corresponding workspace. A regular
layout of workspaces is the following:

1. RCP Workspace
e Common projects
e RCP-specific projects
o RCP target platform

2. RAP Workspace

e Common projects
e RAP-specific projects
o RAP target platform

As the common projects should be shared across both workspaces you need to ensure that they
share the same files on the file system. The best way to achieve this is to create all projects in the
same folder and import them into your workspaces. When you import the projects, be sure not to
check the “Copy projects into workspace” option.

File system

e Common projects



2 Workspace organization

e RCP-specific projects
e RAP-specific projects

2.3 Develop principally on the RAP Target Platform

For effective single-sourcing we should only use API elements that are available in both RCP and
RAP. Unfortunately, there is no collection of bundles available that contains a pure subset of both, as
shown in Figure 1. As we need to choose one or the other it is recommended to develop on RAP. The
reason is that the set of APIs offered by RAP is smaller than the set of APIs offered by RCP. Also it
tends to be more obvious when one is using a RAP-specific APL

] RcPonly APl

B RAPonyAPI

. Shared AP

Figure 1: The RCP and RAP APIs



[ N

3 Dependencies

3 Dependencies

3.1 The problem - What strategy is best for managing dependencies

OSGi (and therefore Eclipse RCP and RAP) offers two separate mechanisms for declaring dependen-
cies between bundles: Import-Package, which provides dependencies on the Java package-level, and
Require-Bundle, which provides for dependencies based on whole bundles.

3.1.1 Bundle dependencies

Require-Bundle (Require-Bundle) was introduced in OSGi Release 4, principally to support legacy
Eclipse plug-ins, which in Eclipse 3.0 became OSGi bundles. The pre-3.x Eclipse module system did
not have any concept similar to Import-Package, and dependencies were specified based on the 1D
of another plug-in. Therefore in OSGi R4, Require-Bundle works by importing all of the packages
exported from a particular named bundle. Require-Bundle still tends to be favored by many Eclipse
plug-in developers both for historical reasons and because PDE makes it significantly easier to use in
development than Import-Package.

3.1.2 Package dependencies

Import-Package is the original mechanism used in OSGi, and until Release 4 it was the only one. It
is very simple: a bundle lists all of the Java packages that it imports from other bundles, including
packages supplied by the JRE such as javax.swing, org.w3c.dom etc. These packages are then resolved
at runtime by the OSGi framework (i.e., Equinox) against a corresponding exported package from
another bundle.

3.1.3 Split packages

The eclipse workbench uses the OSGi concept of "split packages”. This enables OSGi to have virtual
packages which are physically split across several bundles. See the OSGi 4.1 specification (§3.13.3) for
more informations about split packages.

In order to import only a specified part of the package, you need to extend the Import-Package
declaration with the split attribute as shown in the following MANIFEST.MF fragment:

Manifest—Version: 1.0
Import—Package: org.eclipse.ui; ui.workbench="split”,
org.eclipse.ui.part; ui.workbench="split”

Listing 1: Importing a split package

The ui.workbench="split” directive tells Equinox to use only the "ui.workbench” part of this split
package. Otherwise the dependencies would not be resolved.

3.2 Favor Require-Bundle

Even though Import-Package is recommended by OSGi developers it has the drawback of split pack-
ages. In addtion, the tooling support in PDE is much better for Require-Bundle.

In order to avoid hving to manage the dependencies in every bundle, you should create a new bundle
(eg. com.foo.bar.ui.compatibility) which has (optional) dependencies on both runtime bundles.
Manifest—Version: 1.0
Require—Bundle: org.eclipse.rap.uij;resolution:=optionalj;

visibility:=reexport ,
org.eclipse.rap;resolution:=optional;

visibility :=reexport

Listing 2: Optional bundle requirements



3 Dependencies

Now all the application’s UI bundles can use the compatibility bundle as their main dependency for
getting “wired” to the correct bundle at runtime.



4 Missing API

4 Missing API
4.1 The problem

Inevitably some parts of an application cannot be single-sourced. For example we may decide to offer
convenience features in the RCP edition that are not available under RAP, or develop presentation or
“theming” code for the RAP edition. In each case this leads to code that will compile under RCP but
not RAP and vice versa.

4.2 Building fragments

It is important to sort the runtime-specific code into separate "fragments”. Fragments are incomplete
bundles (hence the name) which attach themselves to other bundles and extend them in some way. If
RCP-specific code exists in a bundle then that whole bundle will not be resolved in RAP, including
generic code that might otherwise have worked in both environments. By making separate fragments
for the RCP-only or RAP-only code, we can maximise single-sourcing. Furthermore, in some cases
it is useful to separate Ul code from "core” or non-UI code, so that the non-UI code can be reused
elsewhere. In general, a bundle should contain a logical grouping of business functionality. With our
approach, there will be up to one bundle and one fragment for each such grouping. The naming should
follow a standard scheme as shown:

Table 1: Bundle Naming Scheme

Bundle/Fragment Name Description

com.foo.bar.ui UI (both RCP and RAP) functionality
com.foo.bar.ui.rcp RCP-only functionality (fragment)
com.foo.bar.ui.rap RAP-ouly functionality (fragment)

Which parts of the application will live in the host bundle and what is platform specific will be
discussed in the rest of this paper.

4.3 Extract a compatibility plug-in

Depending on the requirements, it may be appropriate to extract a bundle which contains platform-
specific differences which are not bound to the current application. We use the term compatibility
plugin to refer to this bundle. It has the same fragment structure as discussed above. The compatibility
bundle can be reused in future development. See also Figure 2 for an overview of this approach.

10



4 Missing API

Extended Single Sourcing

<<Fragment>>

<<Bundle>> <<Fragment>>

RAP-specific Code |—— Compatibility = RCP-specific Code

A

Single Sourcing

<<Bundle>>

Application <>

<<Fragment>> <<Fragment=>
RAP-specific Code RCP-specific Code

Figure 2: Extended single sourcing



5 Missing extension points

5 Missing extension points

5.1 The problem

Some of the extension points used in regular RCP applications are not available in RAP. For example to
the org.eclipse.ui.bindings extension point is not available. On the other hand there are contributions
which are specific to RAP such as themes, brandings or the entrypoint extensions.

5.2 Move extensions to fragments

Since we already have defined fragments we can move the platform-specific extensions to the frag-
ment.zml of the corresponding fragment projects. This way the extensions are only contributed to
the runtime when the fragment is available and thus only when we have the right runtime.

For an example of a fragment.xml for the RAP-specific fragment, see the following snippet.

<?xml version="1.0" encoding="UTF-8”7>
<?eclipse version="3.27"7>
<fragment>
<extension
point="org.eclipse.rap.ui.entrypoint”>
<entrypoint
class="maildemo. EntryPoint”
id="maildemo.rap.entrypoint”
parameter="maildemo”>
</entrypoint>
</extension>
</fragment>

Listing 3: Sample fragment.xml

12



o e N

[SEECI-" TN T NN NI R U

[

6 Application startup and Activator scope

6 Application startup and Activator scope

6.1 The problem

A widely used approach to initialize an RCP application is the use of Activators that are called
while starting an OSGi bundle. See the OSGi 4.1 specification (§4.3.6) for more information about
Activators.

While initializing the needed artifacts during bundle start is a good approach in RCP - it can lead
to serious problems in a multi-user environment like RAP.

One of the key RAP behaviours during runtime is that all OSGi bundles are started only once. Not
every user of the application has its own set of bundles - instead all bundle instances are shared across
all users (and sessions). This means that the Activator of a bundle has two semantic differences:

1. The Activator is called once per application, not per user

2. It is called in application scope, not in session scope

6.2 Separate session-specific code from Activator

As there can be no active session when a bundle starts we need to separate all session and user related
code from the Activator so it can be executed when the session starts.

public class Activator extends AbstractUIPlugin {

public void start (BundleContext context) throws Exception {
super.start (context);
// session specific code

}

Listing 4: Examplary Activator

One solution is to move the related code into the createUI method of the entrypoint as this will be
executed in the current session context.

public class EntryPoint implements IEntryPoint {

public int createUI() {
// session specific codel|
Display display = PlatformUI.createDisplay () ;
return PlatformUI.createAndRunWorkbench (display , new ApplicationWorkbenchAdvisor());

Listing 5: Examplary entrypoint

Another possibility is to use the org.eclipse.ui.startup extension point to contribute new runnables
into the startup process of the workbench. These IStartup implementations are registered trough the
extension point mechanism as shown in the following snippet:

<extension point="org.eclipse.ui.startup”>
<startup class="org.eclipse.example.StartupClass” />
</extension>

Listing 6: plugin.xml

This is optimal for situations such as when the workbench has a session-scope and the IStartup
implementations are to be called when the session starts.

13



1
2

1
2
3
4

= O © W N o u

= e

7 API Differences

7 API Differences
7.1 The problem

Inevitably there are some differences between the two runtimes - a common problem when single
sourcing an application. RAP provides a strict subset of all available SWT and RCP APIs. If the
API is available it has the same name, belongs to the same package and behaves the same way as the
corresponding RCP API. But this means that API which is not available in RAP needs to be wrapped
somehow in order to be able to use it in the common codebase. Some examples for missing APT are:

e GC
e FileDialog

e MouseMove Events

However, RAP itself provides a minimal set of APIs which are not part of RCP. These were intro-
duced in order to meet several web specific requirements. The following describes how to use these
APIs without breaking the RCP implementation.

7.2 Encapsulate the problem

The first step to get around these obstacles is to provide a common interface to access the required
artifact. What the artifact really is depends on the API usage of the application. It could be a simple
object, an action or even whole dialogs.

To have a common accessor to those artifacts we need to create an abstract type in the host bundle
that will provide us later with the concrete implementation.

As a concrete example we take the ActionFactory of the workbench. It defines several preconfigured
actions to be integrated into the application. One of these actions - the ABOUT action - is not available
in RAP.

Using the ABOUT in RCP applications is not unusual. The following is a snippet taken from an
ActionBarAdvisor of an RCP application.

aboutAction = ActionFactory .ABOUT. create (window) ;
register (aboutAction);

Listing 7: About Action

As ActionFactory. ABOUT is not available we need to replace it with a facade. This facades delegates
the actual request during the runtime to the corresponding fragment project. In the case of RCP we
can use the real ActionFactory. ABOUT implementation. Providing an alternative action for the web
is done by returning another action implementation by the RAP fragment. We replace the real API
with a call to our new facade which follows in the next paragraph.

aboutAction = ActionFactoryFacade.createAboutAction(window) ;
register (aboutAction) ;

Listing 8: Replace the call with the facade

Then we create the facade we have introduced.

public abstract class ActionFactoryFacade {
private final static ActionFactoryFacade IMPL;
static {
IMPL = ( ActionFactoryFacade ) ImplementationLoader.newlInstance (
ActionFactoryFacade.class );
}

public static IWorkbenchAction createAboutAction( final IWorkbenchWindow window ) {
return IMPL. createAboutActionInternal ( window ) ;

¥

abstract IWorkbenchAction createAboutActionInternal ( IWorkbenchWindow window ) ;

14



12

© W N U W N

[~ I S Sy
ook W N R O

BN I R N

© 0N oA W N

oo
v~ O

13

26
27
28
29

7 API Differences

}
Listing 9: Abstract type in host bundle

The purpose of the facade is to load the correct implementation of the ActionFactoryFacade and
call their internal methods to create the requested objects. The ImplementationLoader is therefore
needed to load the implementation of the abstract type from the fragment. It should be implemented
as the following snippet shows:

public class ImplementationLoader {

public static Object newlnstance(final Class type) {
String name = type.getName () ;
Object result = null;
try {
result = type.getClassLoader ().loadClass(name + ”Impl”).newlnstance () ;
} catch (Throwable throwable) {
String txt = ”Could_not _load _implementation for {0}”;
String msg = MessageFormat.format (txt, new Object [] { name });
throw new RuntimeException(msg, throwable);

}

return result ;

Listing 10: ImplementationLoader

We now have a facade that encapsulates the required functionality and the ImplementationLoader.
Our final step is to create two different implementations of the behavior for the different runtimes.
As mentioned above the implementation for the ABOUT action can simply be delegated to the
original RCP equivalent.
public class ActionFactoryFacadeImpl extends ActionFactoryFacade {

IWorkbenchAction createAboutActionInternal ( IWorkbenchWindow window ) {
return ActionFactory .ABOUT. create ( window );
b

Listing 11: Concrete type for RCP fragment

For RAP we need to provide our own implementation of the ABOUT action here.

import org.eclipse. jface.action.Action;

import org.eclipse.jface.dialogs.MessageDialog;

import org.eclipse.ui.IWorkbenchWindow ;

import org.eclipse.ui.actions.ActionFactory.IWorkbenchAction;

public class ActionFactoryFacadeImpl extends ActionFactoryFacade {

private class AboutAction extends Action implements IWorkbenchAction {
private IWorkbenchWindow window ;
public AboutAction (IWorkbenchWindow window) {
this.window = window ;
setId ( ”about” );
setText (”?About_RAP_MailDemo”) ;
setToolTipText (”About_RAP_MailDemo” ) ;

public void dispose () {

window = null;
}
public void run() {
String title = ”About_Message”;
String msg = ”This_is_the_about_Message_of_the RAP_Mail_Demo” ;
MessageDialog.openInformation (window. getShell (), title , msg );
}

}

IWorkbenchAction createAboutActionInternal (IWorkbenchWindow window) {
return new AboutAction(window) ;
}

}
Listing 12: Concrete type for RAP fragment

15



=

=

O © WO oA W N

©C©WNO U A W N -

SRV VR

8 Field validation

8 Field validation

8.1 The problem

A common pattern for form validation in RCP and SWT applications is to use the ModifyListener
interface to implement keystroke-level validation of field data. This has the advantage of producing
more immediate feedback for the user regarding the data they are entering. The following code snippet
shows an example of this technique:

Text txtDate = new Text(parent, SWI.BORDER) ;
txtDate.addModifyListener (new ModifyListener () {
public void modifyText(ModifyEvent e) {
try {
date = formatter.parse(txtDate.getText());
setErrorMessage (null) ;
} catch (ParseException e) {
setErrorMessage (7 Invalid _date”);

1)
Listing 13: Usage of ModifyListener

Unfortunately the Modify- and VerifyListener of RWT do not behave exactly as their correspoinding
parts in SWT. This can be traced back to the distributed nature of RAP. Over a high-latency network
connection the SWT behavior can introduce significant performance degradation to the Ul. RWT
generally reduces the number of requests sent to the server and decreases server load by merging
multiple events into one HTTP request. This is especially interesting when utilizing the doit flag of
the incoming event as this may match to several keystrokes instead of a single keystroke. This can
lead to semantic differences as the following example illustrates. Imagine that we have a VerifyLister
that restricts the length of a text field.

final Text t = mew Text( shell , SWI.BORDER SWT.MULTI ) ;
t.addVerifyListener( new VerifyListener () {
public void verifyText( VerifyEvent event ) {
if( t.getText().length() > 5 ) {
event.doit = false;
}
}
1

Listing 14: Example of semantic differences

With SWT this snippet works as expected. Running the same snippet with RWT you need to be
careful as the events are merged into bigger chunks. This can lead to a problem when you type more
than 5 characters into the textfield. Depending on the timing it could happen that the doit flag will
be set to false for the whole chunk - not only for the events after the fifth character.

The Eclipse Databinding framework is, in most situations, based on VerifyListeners and thus is sub-
ject to the same restrictions. In the case of a high-latency network connection you should be careful
when integrating the Databinding framework.

8.2 Reduce the frequency of validation checks

Depending on the latency of the network it may be a better approach to reduce the frequency of
validations. This can be achieved by using listeners which instead of being triggered by keystrokes are
triggered, for example, by focus events.

final Text t = new Text( shell , SWI.BORDER SWT.MULTI ) ;
t.setText( ”here_is _some_ text” );
t .addFocusListener ( new FocusAdapter () {

public void focusLost( FocusEvent event ) {

16



® N o

©

11
12
13

8 Field validation

if( t.getText().length() = 0 ) {
t .setBackground ( Graphics.getColor( 255, 0, 0 ) );

} else {

t .setBackground( null );

}
}

s

Listing 15: FocusListener for field validation

With this approach the events only get fired on focus events no matter what happens inside the

text field.

17



N o U A W N e

oW N =

o

9 SWT Resources

9 SWT Resources
9.1 The problem

As RAP lives in a server environment the logic is only run on the server side while the client is
responsible for showing the UI. Thus the concepts of SWT for acquiring system resources like colors
or fonts cannot be carried over in exactly the same fashion. RAP also lowers memory consumption
on the server-side by reusing existing resources. Therefor RAP banned constructors from all SWT
resources while providing factory methods for the following resource classes.

e org.eclipse.swt.graphics.Color
e org.eclipse.swt.graphics.Font
e org.eclipse.swt.graphics.Image

e org.eclipse.swt.graphics.Cursor

When writing SWT code you are responsible for disposing all resources created in your code. Under
normal circumstances this is done by calling dispose on the resource object. As this would invalidate
the resources across all sessions, RAP does not provide the dispose mechanism at all.

9.2 Use higher-level API

A pattern that frequently occurs is the use of use an abstraction layer above these APIs. In the case
of resources you can use the *Registry classes that JFace already provides. Instead of managing the
resources yourself you let the registry do the work. Neither the instantiation nor the recycling of
resources needs to be done manually. The big advantage is that this approach can be used in RCP
and RAP so there is no need to have a different implementations.

Starting with a simple SWT snippet which acquires a new color object, we will implement the same
behavior with the use of a ColorRegistry.

import org.eclipse.swt.graphics. Color;

Color redColor = new Color( display, 255, 0, 0 );
Listing 16: Creating a new color (SWT)

Instead of initiating the color object directly,we manage the lifetime of these objects with registries
that JFace provides.

import org.eclipse.jface.resource.ColorRegistry;

import org.eclipse.swt.graphics. Color;

import org.eclipse.swt.graphics .RGB;

ColorRegistry registry = new ColorRegistry( Display.getCurrent () );
registry .put( “redColor”, new RGB( 255, 0, 0 ) );

Color redColor = registry .get ( “redColor” ) 8

Listing 17: Creating a new color (JFace)

There may be situations when it is not possible to use the JFace registries. The above mentioned
resources can also be obtained directly through the factory methods of RAP. These are available on
the Graphics class introduced by RAP.

import org.eclipse.swt.graphics.Color;
import org.eclipse.rwt.graphics.Graphics;
Color redColor = Graphics.getColor( 255, 0, 0 );

Listing 18: Creating a new color (RWT) - not recommended

18



9 SWT Resources

As the Graphics class is only available in RAP, the corresponding source artifact needs to be added
to the RAP specific fragments. For the RCP implementation constructor would be used.

An important item to note is that the resources in RCP need to be disposed manually. This results
in an empty implementation for the RAP fragment.

19



O © WO O AW

=

o N

10  Singletons and Scopes

10 Singletons and Scopes
10.1 The problem

As RAP is a multi-user and distributed runtime we need to make sure that everything which originally
runs in a single-user mode will have the same semantics in the multi-user environment.

One of the most common problems is the usage of the Singleton design pattern. [GHJV95] This
pattern allows only one unique object instance of a class. As RAP needs to serve several users at
the same time this may not be the needed approach. Most singletons should be unique per user. In
contrast to RCP, with RAP we have not only one but an unlimited number of users.

10.2 Use session singletons

To make singletons aware of the user scope we need to restrict the singletons to a specific user session
instead of one application-wide object.
A common implementation of an application-scoped singleton in RCP is as follows:

public class MySingleton {
private static MySingleton instance;
public static MySingleton getInstance () {
if( instance == null ) {
instance = new MySingleton () ;
}
return instance;
}
private MySingleton () {
// prevent instance creation
}

Listing 19: Singleton (Application scope)

To reduce the scope of the object instance to a specific session we use the concept of ’'session
singletons’. RAP already provides a helper class to create objects like this within the session scope.
The class is called SessionSingletonBase and is used as follows:

public class MySingleton {
public static MySingleton getInstance () {
return ( MySingleton.class )SessionSingletonBase.getInstance( MySingleton.class );
private MySingleton () {
// prevent instance creation
}

Listing 20: Singleton (Session scope)

Doing this behind a facade we can reuse the same concept as we used in chapter 7.

10.3 Move the instance creation to the fragments

The instance creation is delegated to one of the fragment implementations by a common accessor.
As the fragments need to have the same interface for creating the instance we use an interface called
ISingletonProvider. Both the singleton and the provider interface should be created in the host bundle.

public class MySingleton {
private static final ISingletonProvider PROVIDER;

static {
PROVIDER = ( ISingletonProvider ) ImplementationLoader.newlInstance( MySingleton.class );

20



H O ©® N uE N

=

B oW N =

N o wo

10 Singletons and Scopes

public static MySingleton getInstance () {
return ( MySingleton ) PROVIDER. getInstancelnternal () ;

private MySingleton () {
// prevent instance creation

Listing 21: Singleton (delegating stub)

public interface ISingletonProvider {
Object getInstancelnternal () ;

}
Listing 22: Singleton Provider Interface

As the singleton provider differs between the platform-specific fragments (singleton for RCP, session-
singleton for RAP) we need to provide two different implementations of the interface.

For RCP we implement the ISingletonProvider interface as a regular singleton. This implementation
belongs to the RCP-fragment.

public class MySingletonImpl {
private static MySingleton instance;

public synchronized Object getInstancelnternal () {
if( instance == null ) {
instance = new MySingleton () ;

}

return instance;

}
}

Listing 23: Singleton Provider (RCP)

When running the application with multiple users, we want to create a session-scoped singleton.
This implementation belongs to the RAP-fragment.

public class MySingletonImpl {

public Object getInstancelnternal () {
return SessionSingletonBase.getInstance( MySingleton.class );

Listing 24: Singleton Provider (RAP)

With this architecture we are able to reuse the same code in RAP and RCP. The singleton imple-
mentation lives in the host bundle and only the way it is initiated is platform-specific.

21



© 0N oA W N

[
o

(YNNG RN VR ORI

[ B N A

10
11
12

14
15
16

11 Jobs and background threads

11 Jobs and background threads
11.1 The Problem

Utilizing jobs* in RCP and RAP applications is a common pattern to process asynchronous work in
the background. However, to access something session-specific like a session singleton you need to
be careful. As background jobs run in the application scope and not in the session scope we need to
provide the correct context for accessing session-specific objects.

11.2 Use a facade

The approach is the same as in chapter 7. We work against an abstract facade in our host bundle and
provide different implementations in each fragment.
The facade is just a factory to return a new Job instance.

import org.eclipse.core.runtime.jobs.Job;
import org.eclipse.swt.widgets.Display;

public abstract class JobFactory {
private final static JobFactory IMPL;
static {
IMPL = (JobFactory) ImplementationLoader.newlInstance(JobFactory.class);

public static Job createJob( final Display display, final String name, final JobRunnable
runnable) {
return IMPL. createJobInternal (display , name, runnable);

}

abstract Job createJobInternal( Display display, String name, JobRunnable runnable);

Listing 25: Abstract Job Factory

To encapsulate the code that will be run in a job we introduced a JobRunnable. This has the same
semantics as a regular java.lang. Runnable but has the ability to transfer the status of the job (see
IStatus).

import org.eclipse.core.runtime.IProgressMonitor ;
import org.eclipse.core.runtime.IStatus;

public interface JobRunnable {
IStatus run(IProgressMonitor monitor) ;
¥

Listing 26: JobRunnable

As RCP assumes only one user (session) we can execute the runnable in a regular job. The imple-
mentation for the RCP fragment is shown below.

import org.eclipse.core.runtime.IProgressMonitor;
import org.eclipse.core.runtime.IStatus;

import org.eclipse.core.runtime.jobs.Job;

import org.eclipse.swt.widgets.Display;

public class JobFactoryImpl extends JobFactory {

Job createJobInternal (final Display display, final String name, final JobRunnable
runnable) {
return new Job (name) {
protected IStatus run(IProgressMonitor monitor) {
return runnable.run(monitor);

}
I
}

Listing 27: Job Factory Implementation (RCP)

4http://www.eclipse.org/articles/Article-Concurrency /jobs-api.html

22



© 0N oA W N

=
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25

11 Jobs and background threads

In the case of RAP we need to process the runnable inside an environment with a context. To do

this RWT provides the method runNonUIThread WithFakeContext.

package facades;

import org.eclipse.core.runtime.IProgressMonitor;
import org.eclipse.core.runtime.IStatus;

import org.eclipse.core.runtime.jobs.Job;

import org.eclipse.rwt.lifecycle.UICallBack;
import org.eclipse.swt.widgets.Display;

public class JobFactoryIlmpl extends JobFactory {

Job createJobInternal (final Display display, final String name, final JobRunnable

runnable) {
Job job = new Job(name) {
protected IStatus run(final IProgressMonitor monitor) {
final IStatus|[] result = new IStatus|[1];
UICallBack .runNonUIThreadWithFakeContext (display ,new Runnable() {
public void run() {
result [0] = runnable.run(monitor);

}
B
return result [0];
}
}s
return job;

}
}

Listing 28: Job Factory Implementation (RAP)

23



0N U W N

V)

12 Internationalization and localization

12 Internationalization and localization

12.1 The problem

In RAP we have to deal with different languages for different user sessions. In fact, the language can
also change between requests within the same session. Therefore, we cannot store language related
information statically in Message Bundle classes as it is stored in RCP. Instead, we have to use a
different instance of the Message class for every language. The NLS class is part of the regular RCP
internationalization mechanism ® and follows the usage conventions of the OSGi 4.1 specification (see
§4.3.6).

An example of such a message class can be found in the following.
import org.eclipse.osgi.util.NLS;

public class Messages extends NLS {
private static final String BUNDLENAME = ”maildemo. messages”; //$NON-NLS—1$

public static String OpenViewAction_0;
public static String OpenViewAction_1;
public static String OpenViewAction_2;
public static String OpenViewAction_3;

static {
// initialize resource bundle
NLS. initializeMessages (BUNDLENAME, Messages.class);

}

private Messages () {

}

Listing 29: Sample RCP Message class

12.2 Make translatable strings non-static

The first thing we need to do is remove the static modifier from all translatable messages. Otherwise
the static messages would be shared across all sessions and we could not provide an internationlized
application for each user. In our initial example we need to remove the static keyword from all
OpenViewAction fields.

12.3 Remove static initializer and supertype

As with the static keyword for all message fields, we remove the static initializer from all translatable
messages to avoid initializing the contents of the message fields when the class is loaded.

In order to use our own NLS mechanism we also need to ensure that the message class does not
extend the NLS class of OSGi.

We also have to provide an accessor to get an instance of our message class which is localized during
runtime. This will just delegate the real work to a helper (eg. NLSHelper) which in turn gives us an
instance of the class with all fields initialized with the corresponding strings.

public static Messages get () {
return NLSHelper.getMessages (Messages . class);

}

Listing 30: Accessor for Message classes

Shttp://help.eclipse.org/ganymede/topic/org.eclipse.jdt.doc.user /concepts/concept-string-externalization.htm

24



© 0N U W N

© 0N U W N

LI I I I N Ty T
AW N R O©O®NO O A ®N = O

25
26
27
28
29
30

12 Internationalization and localization

12.4 Create an NLSHelper and implementations

The concept is the same as in chapter 7. We work against an abstract facade in our host bundle and
provide different implementations in each fragment. On our host bundle we have the abstract class
which loads to platform-specific implementation from one of the fragments.

public abstract class NLSHelper {
protected static final String BUNDLENAME = ”sample.messages”; //$NON-NLS—1$

private final static NLSHelper IMPL;
static
IMPL = (NLSHelper) ImplementationLoader.newlInstance (NLSHelper. class) ;

public static Messages getMessages(Class clazz) {
return (Messages) IMPL. internalGetMessages(clazz);

b
protected abstract Object internalGetMessages(Class clazz);

Listing 31: NLS Helper Facade

RAP itself provides some helper classes in order to fully support multi-language applications. One
of these classes is RWT.NLS which can be found in the org.eclipse.rwt package. This class helps to
load the translated .properties files into the class fields. The following snippet shows how to implement
the NLSHelper.

import org.eclipse.rwt.RWT;
public class NLSHelperImpl extends NLSHelper {
protected Object internalGetMessages(Class clazz) {
return RWTI.NLS. getISO8859_1Encoded (BUNDLENAME, Messages.class);
}
¥

Listing 32: RAP implementation for NLSHelper

As RCP was never designed to support multiple languages during runtime we cannot reuse the NLS
implementation of OSGi. Therefore we need to provide our own solution as the following snippet
shows.

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;

import java.lang.reflect.Modifier;

import java.util.Locale;

import java.util.MissingResourceException ;
import java.util.ResourceBundle;

public class NLSHelperImpl extends NLSHelper {

protected Object internalGetMessages (Class clazz) {
ClassLoader loader = clazz.getClassLoader () ;
ResourceBundle bundle = ResourceBundle.getBundle (BUNDLENAME, Locale
.getDefault (), loader);
return internalGet (bundle, clazz);

}

private Object internalGet (ResourceBundle bundle, Class clazz) {
Object result;
try {
Constructor constructor = clazz.getDeclaredConstructor (null);
constructor.setAccessible (true) ;
result = constructor.newlnstance(null);
} catch (final Exception ex) {
throw new IllegalStateException (ex.getMessage());

final Field [] fieldArray = clazz.getDeclaredFields () ;
for (int i = 0; i < fieldArray.length; i++4) {
try {
int modifiers = fieldArray[i].getModifiers();
if (String.class.isAssignableFrom (fieldArray[i].getType())

25



31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52

AW N =

-
= O ©®-N o O

-

12 Internationalization and localization

&& Modifier.isPublic (modifiers)
&& ! Modifier.isStatic (modifiers)) {
try {
String value = bundle
.getString (fieldArray [i].getName());

if (value != null) {
fieldArray[i].setAccessible (true);
fieldArray [i].set(result , value);

} catch (final MissingResourceException mre) {
fieldArray [i].setAccessible (true);
fieldArray [i].set (result, 77);
mre. printStackTrace () ;

}

} catch (final Exception ex) {
ex.printStackTrace () ;

}

return result ;

}
}

Listing 33: RCP implementation of the NLSHelper

12.5 Fix your message references

Instead of accessing the static fields of the message classes we now need to reference the instance fields
in our application.

public Object [] getElements(Object parent) {
return new String [] { Messages.get().View_1, Messages.get().View_2, Messages.get().View_3

¥
Listing 34: Instance fields instead of static fields

With this approach we can serve multi-lingual applications with support for multiple concurrent
languages - for both RCP and RAP.

12.6 Localize the plug-in manifest

Extension definitions in the plug-in manifest file can also contain strings that are subject to interna-
tionalization. In order to get this working there are a few prerequisites:

1. check out the fragment org.eclipse.rap.equinoz.registry from the RAP CVS®

2. include the plug-in org.eclipse.equinoz.registry into your workspace.

The plug-in manifest file (plugin.xml) may also contain translatable strings. Like in RCP, those
strings are replaced by unique keys, prefixed with a % sign. The keys are then resolved in a
plugin.properties file that resides in the root directory of the plug-in. For example, the interna-
tionalized version of the HelloWorld plug-in manifest file contains placeholders for the names of the
view and the perspective.

<extension
point="org.eclipse.ui.views”>
<view
id="org.eclipse.rap. helloworld . helloWorldView”
class="org.eclipse.rap.helloworld . HelloWorldView”
name="%helloWorldView_name”>
</view>
</extension>

<extension
point="org.eclipse.ui.perspectives”>

Shttp://www.eclipse.org/rap/cvs.php

26



12
13
14
15
16
17

12 Internationalization and localization

<perspective
id="org.eclipse .rap. helloworld . perspective”
class="org.eclipse.rap.helloworld.Perspective”
icon="icons /icon. gif”
name="%perspective_name”>
</perspective>
</extension>

Listing 35: Sample plugin.xml with placeholders

And here’s the plugin.properties:

helloWorldView_name = Hello World View
perspective_name = Hello World Perspective

Listing 36: plugin.properties

To make this work, the OSGi manifest file (MANIFEST.MF) must contain the following line:
Bundle—Localization: plugin

Listing 37: MANIFEST.MF

In summary, RAP requires special treatment to support the internationalization of extensions be-
cause of its server-side, multi-user nature. However the Equinox extension registry does the translation
on startup and caches the results. In RAP, different sessions may require translations into different
languages. To solve this, we had to exploit the translation mechanism of the Equinox extension
registry.

To launch the application from Eclipse, you need to import the plug-in org.eclipse.equinox.registry
as source plug-in into your workspace. Make sure that this plug-in is also included in the launch
configuration (from the workspace, not from the target platform).

27



Listings

List of Figures

1
2

The RCP and RAP APIs . . . . . . . . . . 7
Extended single sourcing . . . . . . .. ..o 11

List of Tables

1 Bundle Naming Scheme . . . . . . . . . . . . . . 10
Listings
1 Importing a split package . . . . . . . .. L 8
2 Optional bundle requirements . . . . . . . . . . . ... 8
3 Sample fragment.xml . . . . ... oL oL 12
4  Examplary Activator . . . . . . . . ..o 13
5 Examplary entrypoint . . . . . ..o Lo 13
6 plugin.xml . . . . oL e 13
7 About Action . . . . . . . L 14
8 Replace the call with the facade . . . . . . . . .. . . ... .. ... .. .. ... ... 14
9  Abstract type in host bundle . . . . . .. ..o 14
10 ImplementationLoader . . . . . . . . . .. L Lo 15
11  Concrete type for RCP fragment . . . . . . . ... ... ... . ... ... ... 15
12 Concrete type for RAP fragment . . . . . . . .. ... ... ... . ... .. .. ..., 15
13 Usage of ModifyListener . . . . . . . . . . . 16
14  Example of semantic differences . . . . . . . . ... Lo oL 16
15  FocusListener for field validation . . . . . .. ... .. ..o oL 16
16 Creating a new color (SWT) . . . . . . ... .. . 18
17 Creating a new color (JFace) . . . . . ... ... .. L 18
18 Creating a new color (RWT) - not recommended . . . . .. ... ... ......... 18
19  Singleton (Application SCOpe) . . . . . . . . L 20
20 Singleton (Session SCOPE) . . . . ... 20
21 Singleton (delegating stub) . . . . . ... L 20
22 Singleton Provider Interface . . . . . . . . . . . L L 21
23 Singleton Provider (RCP) . . . . . . . . . e 21
24 Singleton Provider (RAP) . . . . . . . . 21
25 Abstract Job Factory . . . . . . .. 22
26  JobRunnable . . . . . . .. 22
27 Job Factory Implementation (RCP) . . . ... ... ... ... . ... ... 22
28 Job Factory Implementation (RAP) . . . .. ... ... ... . 23
29 Sample RCP Message class . . . . . . . . . . . . 24
30  Accessor for Message classes . . . . . . ... 24
31 NLS Helper Facade . . . . . . . . . .. . e 25
32 RAP implementation for NLSHelper . . . . . .. .. .. .. ... ... ... ... 25
33 RCP implementation of the NLSHelper . . . . . .. .. .. ... ... ... ... 25
34 Instance fields instead of static fields . . . . . . . ... ... ... .. .. ... ... 26
35  Sample plugin.xml with placeholders . . . . . . . .. . ... ... ... ... 26
36 plugin.properties . . . . . . .. 27
37 MANIFEST.MF . . . . e 27

28



References

References

[AHL'05] Ken Arnold, David Holmes, Tim Lindholm, Frank Yellin, Frank Yellin, The Java Team,

[A1103]
[FBB+99)

[GHIV95]

[NWO4]

Mary Campione, Kathy Walrath, Patrick Chan, Rosanna Lee, Jonni Kanerva, James
Gosling, James Gosling, James Gosling, James Gosling, Bill Joy, Bill Joy, Guy Steele,
Guy Steele, Gilad Bracha, and Gilad Bracha. Java language specification, third edition,
2005.

Osgi Alliance. OSGi Service Platform: The OSGi Alliance. 10S Press, December 2003.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code (The Addison-Wesley Object Technology Series).
Addison-Wesley Professional, 7 1999.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley Professional, January 1995.

S. Northover and M. Wilson. SWT: the standard widget toolkit. Volume 1. Boston: Addison-
Wesley, 2004.

29



	Introduction
	Workspace organization
	Target platforms
	Using separate workspaces
	Develop principally on the RAP Target Platform

	Dependencies
	The problem - What strategy is best for managing dependencies
	Bundle dependencies
	Package dependencies
	Split packages

	Favor Require-Bundle

	Missing API
	The problem
	Building fragments
	Extract a compatibility plug-in

	Missing extension points
	The problem
	Move extensions to fragments

	Application startup and Activator scope
	The problem
	Separate session-specific code from Activator

	API Differences
	The problem
	Encapsulate the problem

	Field validation
	The problem
	Reduce the frequency of validation checks

	SWT Resources
	The problem
	Use higher-level API

	Singletons and Scopes
	The problem
	Use session singletons
	Move the instance creation to the fragments

	Jobs and background threads
	The Problem
	Use a facade

	Internationalization and localization
	The problem
	Make translatable strings non-static
	Remove static initializer and supertype
	Create an NLSHelper and implementations
	Fix your message references
	Localize the plug-in manifest


