
Web-enabled RCP Applications with the Rich Ajax Platform

RCP goes Web 2.0
Based on an article by Benjamin Muskalla and Ralf Sternberg
in Eclipse-Magazin Vol. 12; translation by Innoopract Inc; last update Oct 19th 2007

The AJAX hype keeps growing. Buzzwords like Comet or RIA are on everybody’s lips. In the area of enterprise software RCP is already
firmly established as a client application platform. Replacing or extending existing Rich-Client-Applications with web front-ends has traditionally
required a significant investment. The Rich Ajax Platform (RAP) provides a fast-path bridge between the application development with RCP
and the increasingly important Web 2.0 environment.

How do I get my RCP-Application
on the Web? This question is asked
more and more these days. Besides
pure provisioning solutions like
Java Web Start there are different
approaches that use Eclipse Equi-
nox on the server and recreate the
user interface using JSPs or similar
technologies. This approach has the
disadvantage of a reduced code

reuse in the UI, since it is almost
impossible to recreate the work-
bench concept and the familiar ex-
tension points with different tech-
nologies. This is remedied by RAP,
a web-platform that can execute
regular RCP applications with few
restrictions. This gives developers
the opportunity to take an existing
RCP application and deliver it as an

“ajaxified” web application with a
small effort, without coming into
contact with Servlets, HTML or
JavaScript. With it, RCP concepts
like Views, Perspectives or Wizards
can be put into web applications.

The First Steps

In order to become familiar with
RAP we will start by installing and
starting the available demo applica-
tion. To do this, we download a new
RAP version from the project's
homepage [1] and unpack it in any
directory. RAP is being delivered as
a target platform because it will be
executed on a server and cannot use
the standard implementations of
SWT, JFace and the Workbench.
The Eclipse IDE is best started with
an empty workspace so that the tar-
get does not affect other projects.
We now open the Target Platform
preference page (WINDOW | PREFE-
RENCES | PLUG-IN DEVELOPMENT | TAR-
GET PLATFORM) and change the Loca-
tion to the eclipse subdirectory of
the unzipped target. Thereafter we
import the supplied Demo-Project
in the workspace. Under FILE |
IMPORT… we choose Plug-ins and
Fragments, ensure that the project

Page 1

Figure 1: RAP in Action

will be imported with sources (“Im-
port as projects with source
folders”) and on the next page se-
lect the project org.eclipse.rap.de-
mo. After importing has finished,
the Run-Dialog (RUN | OPEN RUN
DIALOG…) will contain a new OSGi
Launch Configuration that we can
use to start the demo application.
The Console View should show
something like this:

osgi>Jul 15, 2007 11:24:57 AM org, morthbay.
http.HttpServer doStart

INFO: Version Jetty/5.1x
Jul 15, 2007 11:24:57 AM org.mortbay.util.Contain-
er start
INFO: Started org mortbay.jet-
ty.servlet.ServletHandler@F0eed6

Jul 15, 2007 11:24:57 AM org.mortbay.util.Contain-
er start
INFO: Started HttpContext[/,/]
Jul 15, 2007 11:24:57 AM org.mortbay.http.Sock-
etListener start

INFO: StartedSocketListener on 0.0.0.0:9090
Jul 15, 2007 11:24:57 AM org.mortbay.util.Contain-
er start
INFO: Started org.mort-
bay.http.HttpServer@1d99a4d

This shows that the server has start-
ed correctly. We now open the ad-
dress http://localhost:9090/rap in a
browser and are inside of a RAP ap-
plication (Figure 1). The immediate-
ly recognizable similarity to RCP

applications is not only of a visual
nature. Views and Perspectives are
present together with familiar RCP
concepts like: Selection Service
Commands and Handler, as well as
the complete Editor infrastructure
and data-binding introduced with
Eclipse 3.3. The demo offers multi-
ple Perspectives so that you can
view more features live. While
looking through the source code of
the demo-project one notices the ab-
sence of JavaScript and HTML
files. It is an actual RCP applica-
tion.

From RCP to RAP

After running the demo application
we should return to our original
question and bring an existing appli-
cation to the web. The well-known
e-mail template from Eclipse will
serve as a foundation, which we will
transform into a RAP application.
For that we will create a new plug-
in in our workspace, call it de.e-
clipsemag.rap.mail and change
some of the wizard's settings in or-
der to generate the e-mail applica-
tion (Figure 2). To be able to
coplete the following steps it is nec-
essary that the RAP Target Platform
is installed and configured.

On the third page of the New
Project Wizard we choose RCP
Mail Template and keep the default
settings. After the project creation is
completed we switch to the Depen-
dencies tab in the Plug-in Manifest
Editor, delete the dependency on
org.eclipse.ui and add org.e-
clipse.rap.ui instead. After that we
go to the Extensions-Tab.

Here we add a new contribution for
the Extension Point, org.e-

clipse.rap.ui.entrypoint. The mis-
sion of our Entrypoint is compara-
ble to the IApplication implementa-
tion in the original. We set the attri-
bute parameter to “default”, which
makes this extension the standard
entrypoint. The attribute class ex-
pects a class which implements the
interface IEntrypoint. Our entry
point should look like the one
shown in Listing 1.

Some compile errors emerge
through these changes, as RAP is
only a subset of RCP. Next we will
address those errors, starting with
the class ApplicationActionBarAd-
visor. This class contains an action
to open an additional workbench
window. Until now this is not possi-
ble to do in RAP, so we just ignore
this action and instead comment out
the corresponding lines (32, 54, 55
and 74). We also go back to the plu-
gin.xml and remove the contribution
to the org.eclipse.ui.bindings exten-
sion point. Keyboard bindings are
already preset by the browser that is
hosting the application, so RAP
does not support this extension
point.

Page 2

Session and Singletons

When porting a RCP application to
RAP special consideration must
begiven to all classes that
implementthe Singleton pattern [3]. A
Singletonis distinguished by the fact
that onlyone instance of it can exist
per application. In contrast to RCP,
there are more than one active user
sessions in a RAP application. That
means that in RAP all users would
access the same singleton object. In
many cases this is exactly the original
purpose of Singletons. In other cases
a Session Singleton should be used
instead, which is instantiated once per
session (i.e. once per user). The
building of such a Session Singleton is
supported by RAP through the
abstract class

a

SessionSingletonBase.
The JavaDocs of this class give more
information about its use.

Figure 2: Preset of the Email
Template

After these simple adjustments we
can start our application for the first
time. For that we use the launch
configuration of the previously im-
ported demo plug-in. We remove
the bundles org.eclipse.rap.demo
and org.eclipse.rap.demo.databind-
ing from the launch configuration
and add our recently created plug-in
de.eclipsemag.rap.mail. A click on
RUN starts the supplied Jetty-Server
and makes the application available
on the familiar URL http://local-
host:9090/rap. In the browser we
now find the e-mail example in a
new attire − as Web 2.0 application.
With a glance at the time we notice
that this adjustment only took a few
minutes. With an alternative tech-
nology, depending on the scope of
its functions and services, this ven-
ture would probably have taken sev-
eral hours – if not days to complete.
Although this is only an example
project it clearly shows what a pow-
erful tool RAP is. Even when appli-
cations cannot be carried over one-
to-one, the code reuse factor is very
high.

How does RAP work?

RAP utilizes the basic components
of Eclipse in order to execute RCP-
Code in a Servlet Container.
Equinox, the Eclipse OSGi imple-

mentation, supports the execution in
a Servlet Container. Building on
that, RAP uses many standard bun-
dles from RCP, like org.eclipse.-
core.runtime. Thus the most impor-
tant Eclipse concepts like the plug-
in architecture and extension points
are available. The plug-ins for
SWT, JFace and the Workbench are
replaced with their RAP equiva-
lents. These implementations estab-
lish a connection between the RCP
code that is running on the server
and the users' browsers. The user in-
terface on the client-side is rendered
using the JavaScript library “qoox-
doo” [2] which is developed by
1&1. In contrast to other technolo-
gies, RAP does not transform Java
code into JavaScript, but exchanges
information between client and
server through AJAX.

An important difference between
RCP and RAP is the inherent multi-
user-requirement of web applica-
tions. The developer must take this
into consideration when working
with user data (see “Sessions and
Singletons” box). It is important to
notice that RAP already provides all
available workbench functions in a
session-oriented manner, so that the
developer does not have to struggle
with it.

The basis of RAP is formed by
RWT – the RAP Widget Toolkit –
which recreates a large part of the
functionality of SWT. While SWT
invokes native methods of the oper-
ating systems to create widgets and
read events, RWT receives events
as a request from the browser and
sends JavaScript code back, which
renders the widgets on the client.
On top of RWT, RAP offers cus-
tomized versions of JFace and the
Eclipse Workbench. The plug-ins
for Eclipse forms and data binding
are also provided. Large parts of
these plug-ins could be ported,
which makes a high reuse of exist-
ing RCP-applications possible.

Given this, it is clear that an RCP-
or RAP developer does not have to
shift to a new programming or
markup language, but can write his
code in the usual RCP style and rely
on previously used concepts. The
really troublesome conversion is
handled by the Rich Ajax Platform
in the background. The API com-
patibility, to which RAP has com-
mitted itself, is a huge benefit to
that cause.

SWT vs. RWT

What are the differences between
programming with RWT and SWT?
As you know, a code snippet says
more than a thousand words. Figure
3 shows the source code of a normal
SWT application in comparison to
the corresponding RWT variant.
First of all it is apparent that the
starting point of the application is
not the main method, but rather the
createUI method of the Interface
IEntryPoint. This difference is due
to the multi-user ability of RAP.
Furthermore, the handling of the
event queue in RAP is taken over by

Page 3

Figure 3: SWT and RWT in comparison

the Platform. However the actual
application code stays the same.

RWT offers only a subset of SWT,
as some parts could not be emulated
offhand. An example of this is the
GC (Graphics Context), which is
used in SWT to draw directly onto
surfaces. While some approaches
for performing similar functions in
JavaScript do exist, those are either
browser specific or very crude. Fur-
thermore frequently occurring
events (like events for mouse move-
ment) are posing a challenge. How-
ever the situation is not always
hopeless. For example, it was possi-
ble implement the ModifyListener
for text fields in RAP with only
minimal semantic deviations, by
collecting multiple keystrokes and
transmitting those at short intervals
as one packet. For the user the dif-
ference is nearly invisible.

Moreover, with RWT is it possible
to write your own widgets. Howev-
er this requires, just as in SWT, a
good knowledge of the inner work-
ings of the platform in use. In the
case of RAP some knowledge about
the basics of JavaScript, fundamen-
tals of the Qooxdoo library and also
the bottom layers of RWT will be
beneficial. An interesting example
of a custom widget is the Google
Maps widget (Figure 4), which can
be found in the RAP-Wiki [4].

Digression: Theming

When you decide what technology
to use, the look and the feel of the
graphical interface plays a big role.
That is also the case with web appli-
cations; a trendy outfit is a plus. To
meet these expectations RAP is
equipped with a theming infrastruc-
ture. This allows the developer to

adapt the appearance to the intended
usage. The appearance of an SWT
application is linked to the current
settings of the desktop environment.
In a similar fashion it is possible to
customize the appearance of a RAP-
based application through theming
settings. Besides fonts, background
and text colors, it is possible to ad-
just the width and style of borders
plus the inner and outer distances of
different widgets. This enables the
developer and/or designer to decide
how they want to present the appli-
cation. Theming also helps with the
integration into an existing environ-
ment (keyword: corporate design).
A good example of a RAP applica-
tion without the typical workbench
look is Eclipse Discovery [5].

In order make building a RAP
theme as simple as possible, we
have used a simple .properties file.
The syntax of individual values re-
sembles those used in CSS2. There-
fore the theme developer does not
have to learn a new syntax. Since
theme definitions are purely declar-

ative it is not even required to have
programming knowledge.

The theme does not only affect the
appearance in the browser. The
server must also evaluate the adjust-
ments that have been made to sizes,
colors and fonts to be able to cor-
rectly layout the application. SWT
system colors can also be changed
at will. For example the method
Display#getSystemColor(SWT.-
COLOR_LIST_BACKGROUND)
will return the color associated with
“list.background” key in the theme.
This is the same color that is used
for the background of lists and text
fields.

Listing 2 shows a snippet from an
exemplary theme definition. The
key shell.title.background config-
ures the background color of the ti-
tle bar of an active Shell (the “win-
dow” in SWT). This theme file must
be registered as an extension in the
plugin.xml (Listing 3). The attribute
default determines if this is the de-
fault theme of the application.

Page 4

Figure 4: Example of a user-defined RAP widget: Google Maps

A small tip: user defined themes can
also be activated via an URL pa-
rameter. To do this the parameter
“?theme=<id>”, specifying the id
of the theme to be used, must be ap-
pended to the usual URL. By the
way the demo plug-in also contains
an alternate example theme (org.e-
clipse.rap.theme.alttheme). Not sup-
ported yet is switching the theme in
a running application. Up to date in-
formation and a good overview
about theming of RAP applications
can be found in [6].

Scalability & Performance

Every type of AJAX application re-
quires a smooth interaction between
the (thin-) client and the server. In
RAP the biggest part of the event

processing happens on the server so
that the latency of the connection is
an important criterion for the inter-
activity of the application. Practical
experience has shown that RAP ap-
plications do also work smoothly
over the Internet, since only a Delta
– e.g. the current changes - are ex-
changed during a Request/Response
cycle. The amount of data send over
the wire is normally a few hundred
bytes and the answer time is a few
milliseconds.

Since the major components of the
Eclipse functionality in RAP run on
the server, scalability deserves par-
ticular attention. During load tests
with 500 parallel user-sessions us-
ing a simple workbench the heap
memory consumption of the JVM
was approx. 100 MB, demonstrating
the scalability of RAP applications.

Summary

The Rich Ajax Platform offers a
possibility to develop web applica-
tions using the RCP paradigm and
also to port existing applications to
the web with a small effort. With
this, RAP opens many new possibil-
ities regarding the standardization
of application platforms for desk-
tops and web clients.

Even though this article is not able
to cover all the details it should
have given a good introduction into
the development with RAP. More
information can be found on the
RAP homepage at Eclipse.org [1]
Innoopract’s RAP web pages [8]
and the RAP-Wiki [4]. Questions
and suggestions can also be dis-
cussed with the developers in the
very active newsgroup [7].

Links & Literature

1. www.eclipse.org/rap
2. www.qooxdoo.org
3. en.wikipedia.org/wiki/Single -

ton_pattern
4. wiki.eclipse.org/RAP
5. www.eclipsediscovery.org
6. wiki.eclipse.org/RAP_Theming
7. news://eclipse.technology.rap
8. www.innoopract.com/en/prod -

ucts/rich-ajax-platform-rap.html

Benjamin Muskalla is a Developer
and Consultant at Innoopract Infor-
mationssysteme in Karlsruhe and an
independent author. He is an active
contributor to the Eclipse Platform
itself and a committer to the Rich
Ajax Platform and the Linux Distri-
butions Project.
eMail: bmuskalla@innoopract.com

Ralf Sternberg is a Developer at
the Eclipse-specialist Innoopract in
Karlsruhe. As a committer he is ac-
tively involved in the development
of RAP since the beginning of this
year. His focus lies on RWT and
theming.
eMail: rsternberg@innoopract.com

Page 5

Listing 2

Border for shells with BORDER

#

or TITLE style
shell.BORDER.border: 3px solid #1695d4

Height of the title bar of Shells
shell.title.height: 25px

Background color for the title bar
of active Shells
shell.title.background: #9dd0ea

Text color for the title bar of active Shells
shell.title.foreground: white

Font for title bar of Shells
shell.title.font: bold 14px Arial, Helvetica,
sans-serif

Listing 3

<extension
 id="my.name.space.themes"
 point="org.eclipse.rap.ui.themes">

 <theme
 id="my.name.space.them.skyblue1"
 name="Sky Blue Theme 1"
 file="theme1/theme.properties"
 default="false"/>

</extension>

mailto:rsternberg@innoopract.com
http://www.innoopract.com/
mailto:bmuskalla@innoopract.com
http://www.innoopract.com/
http://www.innoopract.com/en/products/rich-ajax-platform-rap.html
http://www.innoopract.com/en/products/rich-ajax-platform-rap.html
http://wiki.eclipse.org/RAP_Theming
http://www.eclipsediscovery.org/
http://wiki.eclipse.org/RAP
http://en.wikipedia.org/wiki/Singleton_pattern
http://en.wikipedia.org/wiki/Singleton_pattern
http://www.qooxdoo.org/
http://www.eclipse.org/rap

	RCP goes Web 2.0
	The First Steps
	From RCP to RAP
	How does RAP work?
	SWT vs. RWT
	Digression: Theming
	Scalability & Performance
	Summary
	Links & Literature

